Saturday, April 1, 2017

Reflection for Week of March 27-31

This week focused on diving deeper into genetics and patterns of inheritance, and solidifying our use of Chi Square Tests with respect to genetics (4.5-4.10).  We began Monday with our big fruit fly virtual lab, and continued it into Tuesday and Wednesday.  This dealt with largely basic Mendelian patterns, as well as X-linked genes and homozygous fatal phenotypes (4.5 and a bit of 4.6), and was my favorite part of the week (although the simulation of the flies hatching really grossed me out).  This lab was largely review of material from sophomore year in a new setting, but we also learned lots of new material this week via vodcasts.  Vodcast 4.10 dealt with extending our understanding of how traits can be expressed and passed down, with patterns like epistasis and pleiotropy, as well as penetrance and expressivity.  Vodcast 4.11 focused on human genetic conditions like Tay Sachs and Huntington’s, and whether they were autosomal or sex-linked, and dominant or recessive.  Vodcast 4.12 focused on gene regulation in prokaryotes and eukaryotes, and how this leads to differentiation in eukaryotes and efficiency in both pro- and eukaryotes.  
I think I did well with the material this week.  I understood the fly lab, and really enjoyed trying to figure out what kinds of traits I was dealing with.  My Cross #4 was rather disappointing, however, because it was the same X-linked recessive pattern as Cross #3.  I had to cut my loses though, as I was running short on time this week.  That seems to have become a prevalent theme in my life.  Anyway, I also feel pretty good on Vodcasts 4.10 and 4.11, but 4.12 was almost entirely new material and was a doozy for my brain.  I think with some serious looking over, Mr. Anderson videos, and questions for Mrs. Cole, I’ll feel good with it next week.  I also felt very good on the majority of the Genetics Problems Set #2, but I definitely need to wrap my head around the whole gene mapping thing a little better.  Based on Mr. Anderson’s video, I thought that all the frequencies would add up exactly, but then they didn’t, so I was confused for a bit.  It makes more sense this way though, as I was having a hard time seeing how frequencies could be translated directly into distances.  I will look at the fungus lab again tomorrow, as I think that will also help me understand gene mapping.  
As I said last week, the purpose of DNA is to code for the genes that comprise us, and with the material this week, we now know the majority of our traits are not Mendelian.  Understanding how genes are expressed and what acts on them (parents, environment) is key to understanding how populations evolve and are acted upon, as was studied in Unit One, how the body synthesizes the proteins, carbs, lipids, and nucleic acid as discussed in Unit Two, and how our body is able to create and store energy, as was looked at in Unit Three.  Because of how important genes are, gene regulation is absolutely imperative to understanding life.  This is how we get different organisms, how we don’t all look the same, how we change over our lifetimes.  This is a field that is incredibly relevant right now (not that all of biology isn’t), and that makes it so, so interesting.  We never know what we might learn next.  

No comments:

Post a Comment